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Distributed 3D Navigation and Collision Avoidance for Nonholonomic
Aircraft-like Vehicles

Giannis P. Roussos, Dimos V. Dimarogonas, Kostas J. Kypaulms

Abstract— This paper builds upon previous work of the underwater vehicles, the above solutions cannot be djrectl
authors to present a methodology for the decentralized coml  gpplied as the extension to 3 dimensions is not trivial and
of multiple 3-dimensional nonholonomic vehicles, utilizng Navi- requires the assumption of an augmented motion model
gation Functions. The kinematic, non-holonomic, 3-dimerisnal . . N . . '
model considered is chosen to resemble the motion of an compliant with the real system’s kinematic constraints.
aircraft by preventing any movement along the lateral or Previous work on the control of 3D nonholonomic agents
perpendicular axis, as well as avoiding high yaw rotation rées.  include approaches by Aicardi et al. based on a velocity
The discontinuous feedback control law used is based on the yector field [12], [13] and tracking of a 2D path that has
artificial potential field generated by a Dipolar Navigation -

Function and steers the agents away from each other and been expanded er_npmcally to 3D space [14]. It shoulq be
towards their destinations, while respecting the non-holnomic ~ noted though that in these approaches no obstacle avoidance
constraints present. The performance of the proposed contt method is used, while the bank angle of the vehicle is not
strategy is formally guaranteed and verified by non-trivial  controlled. An approach including obstacle avoidance for a
simulation results. single agent has been proposed by the authors in [15].

I. INTRODUCTION This paper presents a novel method for the distributed

, , ) control of multiple 3-dimensional nonholonomic spherical
Nonholonomic systems [1] are of great interest in thegents ysing a kinematic controller, in combination with

control com_munlty since they appl){ to a number of reabipolar Navigation Function$8]. The nonholonomic model
world paradigms, e.g. wheeled mobile robots, Autonomoygseq for the agents is chosen to represent aircraft flying in
Underwater Vehicles (AUVs) and Unmanned Aerial Vehicle_gimensional space, as it takes into account the kinematic
(UAVS), or automated Air Traffic Control (ATC) in general. oongiraints on the lateral and perpendicular motion thalyap

In such applications stabilization to a goal configuration,, he ajrcraft. Furthermore, the control law is more irveit
along with collision avoidance with static obstacles oreoth ;4 |ess conservative than previous Navigation Function
agents operating in the same area, is required. based controllers [16], while being engineered to keep the
_ As shown in [2], nonholonomic systems cannot be stabiza,y rotation rate minimum [15], as it is common for a
I|zed.py any time |r?var|ant, ;mooth st_ate fe?dbaCk corerpll -5ventional fixed-wing aircraft. This control strategydes
requiring either a time varying or a discontinuous con&ll 6 agents to follow feasible nonholonomic trajectoriest th
Astolfi [3], Canudas de Wit et. al. [4] and Bloch et. al. 5 giq collisions with each other or the workspace boundary,
[5] have proposed control schemes for the stabilization ofnq |ead 1o the desired configuration. Being a reactive; real
a single non-holonomic vehicle using a discontinuous cofjine method, this approach is robust with respect to mogdelin

trol law, although no collision avoidance strategy has be€gy measurement errors; any deviation from the desired path
incorporated. Approaches that additionally perform odista g directly taken into account by our approach.

lzivoidgnceGhiveLbeen prc()jplgsgq thhatkm;:lke uﬁ_awfgation | The rest of the paper is organized as follows: section
unctiong6] by Lopes and Koditschek [7], an anneret. aly; yoscribes the nonholonomic model used for the agents

[8]. Team control theory has also been use.d for the _navigati%nd the problem treated, followed by section Ill, where the
of mob|le nonh_olonomc ro_bo_ts [9]’ where mtgrmedlate WayDipoIar Navigation Functions framework used in this paper
points are derived via optimization and a simple controlle(S presented. In section IV, the proposed feedback control

is used between them. Navigation Functions have be%@heme is introduced and analyzed, while section V includes

Sthccessfugy usfed tohcolntrol mumagim.sySteTsI.Cogg'slt'(;iomputer simulation that support the derived results. The
of a number of nonholonomic agents In centralize [ onclusions of this paper are summarized in section VI.
and decentralized schemes [11]. These approaches address 2

dimensional problems, like ground vehicles or aircraftrityi
at a fixed altitude level. In applications that are inhenentl
3-dimensional, like aircraft flying in 3-dimensional spaare

Il. SYSTEM AND PROBLEM DEFINITION

Each agent is described by a 3-dimensional kinematic
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North - z term motion planning task that we consider in this paper.
It is assumed that a lower level controller, like the Flight
Management System (FMS) or the autopilot will be onboard
to realize the trajectories provided by our control scheme.

Magnetic Heading

Down - z A. Problem Statement

The problem under consideration in this paper is to design
a control law for each ofV spherical agents of radiug
and staten;, described by the kinematic model (1), that will
steer each agent via the inputs:u;, w;1, wi2, w;z to its
desired position and direction (elevation and azimuih),
and ¢;24, ¢izq respectively, while avoiding collisions with
each other or the boundamiV of the given workspace

Fig. 1: Earth-Fixed Coordinates W c R3. Each agent is assumed to have knowledge of
the position, the orientation and the longitudinal velpat
Yaw -7 all other agents, but not of their destinations. Finally th
A Pitch - ¢ workspace is assumed to be spherical of radius. 4.

The scenario described above resembles the case of Air
Traffic Management (ATM), where each aircraft can monitor
the position, orientation and velocity of neighboring eaft
through surveillance, but has no knowledge of the destina-
tions other than its own. The fact that the method is fully 3D
means that each aircraft can use vertical as well as hodkont
maneuvering to exploit the available airspace and stay away

w from conflicts. As the decentralization of Air Traffic Conitro
is thought to be a solution to the increasing air traffic
s load, the control scheme that follows can be useful in the
design of future ATM systems. Other application where such
Fig. 2: Body-Fixed Coordinates an algorithm may be considered are multiple Autonomous

Underwater Vehicles (AUVs) or Unmanned Aerial Vehicles

(UAVS) operating in the same area.
Where[ di1 bin Gis ]T are zyz Euler angles. Let this
Earth-fixedcoordinate system follow thBED (North-East-
Down) convention witha; pointing North,y; East, andz; Navigation Functions are not suitable for the control of
Down. Consequently,;, ¢i2, ¢i3 expressbank elevation a non-holonomic agent, as they do not take into account
and azimuth angles of agents respectively, as shown in the kinematic constraints that apply on such a vehicle.
Figure 1. Let us now define th& body-fixed axed;;, l;, Use of the original Navigation Function, as introduced by
and I;3, with ;; pointing forward,l;» to the right andl;;  Koditschek and Rimon in [6], with a feedback law for
downwards with respect to ageints shown in Figure 2. The the control of a nonholonomic agent can lead to undesired
inputv, of each agent consists of the body-fixed, longitudindpehavior, like having the agent rotate in place. In order to
velocity u; (along axisl;;) and the 3 earth-fixed angular overcome this difficultyDipolar Navigation Functionhave

IIl. DIPOLAR NAVIGATION FUNCTIONS

velocitiesw;y = dix, k =1,2,3: been developed [10], that offer a significant advantage: the
T integral lines of the resulting potential field are all tanty®
vi=[w wi wp wis ] the target orientation at the origin, eliminating the need f

This selection of inputs resembles well the motion of aff1-Place rotation, as the agent is driven to the origin wité t
aircraft, as it does not allow any motion along the bodydesired orientation. This is achieved by considering thael
fixed laterall, or perpendiculai; axes. The kinematics of whose normal vector is parallel to the desired orientato,

the system described above are: includes the origin, as an additional artificial obstagélgy,.
The Navigation Function used in this paper is:
fli = Rz -V (1)

6x4 ; . . b, — Yai + fi @

whereR,; = R(n;2) € R%** is a transformation matrix [17]: C (Vi + fi)F A+ Hon, - Gy - o)

Ji 03y3 Chischiz which is constructed as explained in detail in [16].
Ri=lop 1, |0 % =J(ni2) = | sizcoiz The functionG; is a measure of proximity to collisions

—5¢i2 involving vehicle i: G; is zero when thei — th vehicle

The choice of this extended 3D unicycle as a high levebarticipates in a conflict, i.e. the sphere occupied by agent
model for the aircraft is considered adequate for the short-intersects with other agents’ spheres, and takes positive
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values away from any conflicts, whitg;; = ||n;; — ni1d||2, where
with ||-|| denoting the euclidean norm, is the squared distance

_ . P 2 . L ) 2
of agenti from its destinationni;4. The function f; = Fy =ku - |[Vi®il[” + k= - [[ni — 11l

fi(G;) is necessary in a distributed approach as it is used in P, =30 -V,®;

proximity situations in order to ensure thbf attains positive Vb, — 0P,

values even when agenthas reached its destination. Thus T 9ng

agenti can be temporarily driven away from its destination 0P, T

in order to facilitate the convergence of neighboring agent ot Z“jvj@i Jj
As the workspace is considered spherical With radius el

Tworld, the Workspace bounding obstacleds, = 72 ,, — Wwith ® = ®;(n;;) being the aboveDipolar Navigation
(I[ni1]| + 7:)°. The reader is referred to [16] for more detallsFunctlon(Z) andk,, k., ke, positive real gains. The angles

on the construction of7;, f;. dnnir are defined as follows:
The factor H,,;,; renders the potential field dipolar. As
explained before it is responsiblz for the repulsivpe paaknt Onhiz = atan (sgn(pi) Py, sgn(pi) Lia) (42)
created by the artificial obstacle used to align the trajézso baniz 2 atan? (-SQN(pi)@m [2, + a2 ) (4b)
at the destination with the desired orientatiog);: o
$nni1 = atan2 (sgn(p;) chz - wa, Sgn(pi) wa) (4c)
thi =€nh + Nnhi
. 5 where ®;, = g‘i , By = g‘; b, , andp; = J%, -
nns = [ Jig - (ni = nira)| (ni1 — n;14) is the current position vector with respect to the
Jia =J (ni2q) destination, projected on the longitudinal axis of the dbi
wheree,, is a small positive constant. orientation {;14). The functionssgn andatan? are:
Finally, k is a positive tuning parameter for this class of 1 if >0
Navigation Functions. The potential function given abose h sgn(z) = { 71 it 20
been used in [11] and has proven navigation propertiesiti.e. o v
provides almost global convergence to the destinatiomgalo atan2(y,z) = arg (z,y), (x,y) €C

with ggaranteed _(:o|||_5|on avou_janc_:e. A simple Z_'D ‘?X""mp"?huswn(pz) is equal tol in front of the target configuration
of a Dipolar Navigation Function is presented in Figure 3and 1 behind it. In order to ensure continuity of the above

dep|ct|r:gI:he f|etl)d in the S|Thplet%ase wfgereongl ezstaies aé?\gles on the destination (where the gradient vector is)zero
present. 1t can been seen that the surtace b divides e -0 se the following approximation scheme [18]:

workspace of radius.,.-;q = 100 in two parts, and forces

all the integral lines (crossing the isocurves at a righti@ng

to approach the targ€o, 0) parallel to they axis. 5 {%m, pi>e
nhik =

Snnik (=208 43¢0 ) +0ina(—2(c—pi)* +3e(e=pp)?) pp<e
3 ) k>

o ‘m"‘ for k =1,2,3, wherep; = \/c¢2 - w3 + w3, pa = ||V, ®;]|
‘\:,twwwo,:,'l'//

W andps = |/®7, + @7, . Thus the anglesnn;, are continu-
m
ous whenp, =0 as hm qbnhlk = ¢nhzk = ika, k=

1,2,3. Consequently wheneverﬂ = nﬂd, i e., agent is at
|ts target position, we have:

(/j)nhik = (z)ikda k= 1) 273 (5)

As can be seen in the control law for the longi-
tudinal velocity (3a), the term— (%2t + |%|)% —
Fig. 3: 2-D Dipolar Navigation Function — max (85{;‘,0) P% is zero whenever the partial derivative
9% is non-positive, while the term is activated whéf >
0 ‘As 0% sums the effect of all but the— th agent ond;,
the condmon L > 0 implies that the motion of all other

agents tends to increade, and therefore ageritmust take

\\\\‘ \‘\WM’

-100  -100
y X

IV. 3D NON-HOLONOMIC NAVIGATION
A. Control Law

The proposed control law for ageit: = 1,..., N is as that into account to cancel the increase rate and ensure that
follows: its Navigation Function decreases over time. In the coptrar
09; 09; 1 when "’gy < 0 the term—5- is not used as it is not required.
ui = = sgn(Fy) - Fi = a o ) (33)  This modification of the control law makes sure that the
_ 1
wit = — kgu, (651 — danit) (3b) term —55 is used only when it is absolutely necessary,

. thus making the control law less conservative compared to
Wik = = Koy (Pik = Pnnik) + Pnnik, k£ =2,3  (3¢)  previous approaches [19], that always include such a term,
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as well as more intuitive. The importance of the above wilBy the control law (3a) we deduce:

be made clear in the stability analysis that follows.

B. Stability Analysis

K[u;] = K[-sgn(P;)] - Fi — (8;: * ‘% ) 211- "

Theorem 1:Each agent described by model (1) under Using the chain rule given in [22] we can calculate the
the control law (3) is asymptotically stabilized to its targ 9eneralized time derivative df as follows:

¢12d7
Proof:

¢L3d

N4,

following Lyapunov function candidate is used:

V= Z%, Vi=2 + Z — boni)® (6
The generalized derivative df [20] is:
i Zl vlq:’i T
§ ZL qu>i
12V, (d12—¢nni2)? > VND;
1/2V g15 ($13—Pnn1s)’ (¢12—¢Pnn12)

(¢#13—bnn13)

W = (¢N2*;f>nhN2)

(pN3—bnnN3)
—(¢12—Pnn12)
—(¢13—¢nn13)

1/2V g no (N2—Pnnn2)? =
12V nsg (¢nN3—dnnn3)?
Y2V b s ($12—Pnn12)?
Y2V b s ($13—Pnn1s)?

—($N2—Panna)

L —(¢N3—¢nnn3)

Y2V nne (¢n2—dnnn2)?
L 1/2V¢nh1\73 (¢N3—dnnna)? 1

Let us then consider the multi-agent syst&m=f(x)
resulting from the composition of (1):

- N1 u1ds
nZ.\Il ugJN
12
$12 013
13
x=|loena |, f(x)= WN2
¢N3 .UJNS
Pnhiz2 #nni2
Pnhi3 énn13
$nhN2 Frnnz
= ¢nhN3 - i
L #nnn3 |

The Filippov set [21] of the above system is:

r K[ul].]l

K[UN]JN
w12
w13

KUT=1 o
(l:snh12
¢nh13

#nhN2
L ¢nhN3 .

As the control scheme is discontinuous, we {7
will use Lyapunov analysis for nonsmooth systems to prove
the stability of the system under the control law (3). The

_ﬂgTK

1%

i g
3
+ Z Z ($ik — bnhyy) (Wik — Puhy) =

i k=2
mZKUZV(I)TJ +) Y K(u,]v; 03—
i j#
- Z Z kgun (Dire — dnnir)” =
i k=2

_Z{ sgn ] PiFi_%(aii_i_‘%)}_i_
* Z 815 - sz¢k (¢ir — bnnir)” =
i i k=2
:Z{_|P,-|FL_§ )}_

1 /|00, 0%,
(‘W ot
3
- Z Z kg, (Pik — dnnir)” <0

i k=2

Since eachl; and consequently” is regular [20] and the
level sets of V' are compact, the nonsmooth version of
LaSalle’s invariance principle [22] can be applied. We can
thus conclude that the trajectory of the closed-loop system
converges to the largest invariant subSet

= {n|0 € ‘7} =
1 0P,
—tn: (-1 (%
(¢ik = ¢nn,, Vi, k= 2,3)}

Thus insideS we haveP; = 0 or F; = 0. The condition

F; = 0 holds only whenn;; = n;4, i.e., when each
agent has reached its target position with no other agents
are close enough to makg > 0, while P, = 0 holds

at the target and whenever the agernt®ngitudinal axis

is normal to the field’s gradienV,;®;. In the later case
though, if the agent is away from the destination, kg #

0, at least one of the elevation and azimuth angtes

and ¢;3 are not equal togpnic and ¢nniz respectively,
and therefore the corresponding configurations are outside
S. As a result only the target position is included h
Moreover, by (5) and the conditiof;, = ¢nn,, Vi, k =

2,3, we deduce that the sef reduces to the singleton
{1’1 : (nil = nildVi) A (¢zk = QixaVi, k =2, 3)}, i.e., all the

0P\ .
~ 5 ) = OVi)A
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agents are stabilized to their destinations with the ddsire Fig. 4
elevation and azimuth angles. ]
Remark:From the control law (3a) we can see that the
linear velocity tends to infinite values whea — 0, i.e.,
when the projection of the field’s gradient on the agent's
longitudinal axis is very small. This is the case when the
gradient vector is normal to the agent’s longitudinal axis:
V;®; Ll;1. In this case at least one of the anglgs, &k =
2,3 will be not equal to the the correspondiggy;,, and
therefore(¢ix — dnnik) iS NON zero for at least one é&f =
2,3. Calculating the dynamics of this term we have:

%(@‘k — bnnik) = —kguy (Gik — Gahik) + Pnhik — Pnhik

As a result the absolute valugb;;, — dnnik| is always
decreasing in time and each te; — ¢dnnik, £ = 2,3
is stabilized to0. Thus if the absolute angle between the
field’s gradient and;; is initaly smaller tharg, it will always
remain in[0, Z) and the se€ £ {n|3i: V;®; L;1 }, where
P; — 0, will never be reached. Essentially it is required that

P;-pi>0

at the initial conditions, i.e. agents starting in the swaugp
behind their targets ( wherg; < 0) must have the initial
negated gradient vector driving them forwarg « 0), while
agents starting in front of their target;(> 0) must have the
negated gradient initially driving them backwarg; (> 0).

To enforce additionally only forward (or backward) motion,
we have to ensure that all agents start in the subspace behind
(or in front) of their targets. These mild requirements dtou
not pose practical difficulties in Air Traffic applicationas

they represent reasonable physical conditions.

V. SIMULATION

In order to demonstrate the effectiveness of the above
control strategy, a computer simulation is presented helow
The test case considered consists 4ofagents of radius
r; = 0.05,i = 1,...,4 operating in a spherical workspace A
of rworig = 1. The initial positions are spanned near the 02

0.4 -0.4

boundary of the workspace facing inward and the target con- 06 y
figurations have been set across the center of the workspace,
so that the straight line paths between each start position
and the corresponding destination create multi-agentictfl
near the centg(0, 0, 0). Specifically the initial configurations

of the agents are: viewing angles. The distances between any two agents are
Ny =] —09 0 03 00 0 | plotted in Figure 7 (solid lines) along with the minimum
Nomie=[ 0 —09 —04 0 0 Z 7 safety clearance - r; = 0.1.
ngine = 06 06 —04 0 0 *2"% " As the figures demonstrate, the agents follow feasible,

Nype=[ 06 —06 —-02 0 0 3¢ 7 nonholonomic 3-dimensional paths avoiding collisionshwit
and the target positions and elevation, azimuth angles :€ach other, and converge towards their destinations and di-
rections as intended. Because of the exponential conveggen

ng=[.9 0 _'3];’ P12 =0, P134 :2 rate, some deviation between the final positions (achieved
nzig =[ 0 9 'Q]T’ $22a =0, 230 =3 5 within the simulation duration) and the desired ones can be
ngg = [~6 —06 'Q]T’ ¢32a =0, @330 = and observed, although in general the agents approach their des
ng=[-6 .6 AP, ¢0i=0, wa="T tinations with favorable orientations. The distance betwe

The results can be seen in Figures 4, 5 and 6 where thay two agents is always higher than the safety margin as
trajectories of the agents are plotted as seen f8adifferent no collisions occur.
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Fig. 6
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Fig. 7: Distances between agents (solid lines) and minimum
safety clearance (dashed line) (14

VI. CONCLUSIONS [1s]

This paper proposes a Navigation Function based contrgk;
strategy for multiple 3-dimensional non-holonomic aiftra
like agents. The proposed distributed control scheme steer
the agents towards their targets and away from collisiorjgy;
with each other. The discontinuous control law generates
trajectories that respect the nonholonomic constraints afhté!
the low yaw capability of typical aircraft. The feedback
control law makes the control strategy robust with respect {19]
measurement and modeling errors, while the use of Naviga-
tion Functions provides guaranteed global convergence and
collision avoidance. Our future work is directed towards th[20]
better control of the algorithms convergence rate, and thl[lzsl]
the agents’ velocities.

[22]
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